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We show that the conclusions of recent paper by Flayac et al. �Phys. Rev. B 81, 045318 �2010�� concerning
the stability of half-quantum vortices are misleading. We demonstrate the existence of static half-quantum
vortices in exciton-polariton condensates and calculate the warping of their texture produced by transverse-
electric-transverse-magnetic splitting of polariton band.
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Half-quantum vortices are topological excitations of mul-
ticomponent condensates with combined spin-gauge
symmetry.1 They have been discussed2 to be the lowest en-
ergy topological excitations in exciton-polariton condensates
in semiconductor microcavities with unpinned linear polar-
ization of the condensate. The half-quantum vortices are ex-
pected to define the Berezinskii-Kosterlitz-Thouless �BKT�
transition in this system,2,3 and they have been recently ob-
served experimentally.4

In a recent paper5 Flayac et al. studied the effects of
transverse-electric-transverse-magnetic �TE-TM� splitting of
the exciton-polariton band on the state of vortices. The au-
thors of Ref. 5 have not found the static half-vortex solutions
of quasiequilibrium two-component Gross-Pitaevskii equa-
tion and concluded that “the half-vortices are no more sta-
tionary solutions of the spinor Gross-Pitaevskii equations
and should not affect the critical temperature of the BKT
phase transition.” The goals of this Comment are to show
that this conclusion is incorrect, to indicate the mathematical
error of Ref. 5 that prevented the authors to establish the
stationary half-vortex solutions, and to present the correct
way of solving this problem.

The order parameter of exciton-polariton condensate is
the two-dimensional complex vector �. This vector can be
written in terms of two circular-polarization components,
��, as

� =
x̂ + iŷ
�2

�+ +
x̂ − iŷ
�2

�−. �1�

For the polariton condensate in quasiequilibrium, the compo-
nents of the order parameter �� satisfy two coupled Gross-
Pitaevskii equation �Eq. �10� of Ref. 5�. In the case when
TE-TM splitting is present, the static vortex solutions can be
found numerically, but one has to use the correct asymptotic
behavior of ��. In Ref. 5 it was assumed that the variables
can be separated and, moreover, that the phases of ��

change linearly with the azimuthal angle �see Eq. �12� of
Ref. 5�. These assumptions are incorrect, and due to this
incorrect substitution �12� the static half-vortex solutions
were not found in Ref. 5. In fact, we show below that the
circular phases of the condensate order parameter are non-
linear functions of the azimuthal angle.

To find the asymptotic behavior of static solutions �� at
large distances r from the half-vortex core �i.e., in the elastic
region�, we note that in this region the polarization of the

condensate becomes linear and the amplitudes of the compo-
nents of the order parameter becomes equal, ����=�n /2,
where n�n��� is the concentration of the uniform conden-
sate. Therefore, the asymptotics of �� can be written as

���r → �,�� =�n

2
ei������	����. �2�

Here we denoted the circular phases as ��	, using the com-
mon phase angle � and the polarization angle 	, as defined in
Ref. 2. These angles are yet unknown functions of the azi-
muthal angle �.6

To calculate the functions 	��� and ���� we first obtain
the elastic energy of the condensate in the presence of
TE-TM splitting. Substitution of Eq. �2� into the quasiequi-
librium Hamiltonian of polariton condensate �Eqs. �3�–�8� of
Ref. 5� gives

Hel =

2n

2m�� dxdy	��	�2 + ����2 + 2�
� �e−i��−	�

�z
�

�� �ei��+	�

�z
� + � �ei��−	�

�z� �� �e−i��+	�

�z� �� . �3�

Here the effective mass m� and the TE-TM splitting param-
eter � are defined by

1

m�
=

1

2
� 1

ml
+

1

mt
�, � =

mt − ml

mt + ml
, �4�

where the effective mass of transverse �or the TE� polaritons
is mt and the effective mass of longitudinal �or the TM�
polaritons is ml. In Eq. �3� we also use the complex deriva-
tive

�

�z
=

1

2
� �

�x
− i

�

�y
� . �5�

The equations for the angles � and 	 are obtained by
variation of the functional Hel. In the limit r→� only azi-
muthal derivatives are to be kept in these equations and we
obtain

�1 − � cos�2u���� + 2� sin�2u�u��� = 0, �6a�

�1 + � cos�2u��u� + � sin�2u��1 − u�2 − ��2� = 0, �6b�

where

u��� = 	��� − � . �7�
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We note that the superfluid current J that corresponds to
the Hamiltonian density, Eq. �3�, is given by more compli-
cated expression than the usual one. In particular, for the
wave function �2� the radial and azimuthal components of
the current are

Jr =

n

m�r
� sin�2u�

d�

d�
, �8a�

J� =

n

m�r
�1 − � cos�2u��

d�

d�
. �8b�

The equation of continuity of the current for the static solu-
tions, div J=0, is reduced to the condition dJ� /d�=0 and
gives Eq. �6a� again.

In what follows we denote the vortex solutions as �k ,m�
with the polarization and phase winding numbers k and m,
respectively. These numbers are defined by 	�2�−	�0�
=2k and ��2�−��0�=2m, and they can be integer or
half integer provided the sum k+m is an integer.2 The topo-
logical charges used in Ref. 5 are l�=m�k. Equations �6a�
and �6b� have simple solutions for k=1 and an arbitrary in-
teger m. Namely, 	=� and �=m� so that u����0. Only
these solutions with l−− l+=2 were claimed to exist and were
analyzed in Ref. 5. The variables are indeed separated in this
case. Moreover, the polarization field for the �1,0� vortex
�hedgehog� is purely longitudinal,7 and it is described by the
radial function of the usual vortex in one-component conden-
sate with the longitudinal mass ml.

Apart from trivial solutions, Eqs. �6a� and �6b� can be
solved for any other winding numbers �k ,m�. Interestingly,
there are two qualitatively distinct type of solutions for el-
ementary half-quantum vortices with k ,m= �1 /2. In real
microcavities the TE-TM splitting is small and we first
present the series of these solutions in the powers of ��1.
For the �1 /2, �1 /2� half-vortices the solutions are

���� = � 
1

2
� +

�

2
sin��� +

�2

4
sin�2�� + ¯ , �9a�

	��� =
1

2
� −

�

2
sin��� +

�2

8
sin�2�� + ¯ . �9b�

For the �−1 /2, �1 /2� half-vortices the solutions are

���� = � 
1

2
� +

�

6
sin�3�� +

�2

36
sin�6�� + ¯ ,

�10a�

	��� = −
1

2
� +

�

6
sin�3�� −

�2

24
sin�6�� + ¯ . �10b�

The solutions to Eqs. �6a� and �6b� can also be found

numerically as shown in Fig. 1. We have used a high value of
the TE-TM splitting parameter, �=0.3, in order to illustrate
the qualitative features of the behavior of polarization and
phase angles. Analyzing the superfluid current around the
vortex core we note that the streamlines are warped with
respect to perfect circles. Physically, the warping appears due
to the change in the polariton mass with polarization. Using
Eqs. �8a� and �8b� we find the streamlines to be defined by
equation

d ln r

d�
=

� sin�2u����
1 − � cos�2u����

. �11�

The warping of streamlines is shown in the insets of Fig. 1.
The asymptotics found above divide the solutions of the

Gross-Pitaevskii equation into topologically distinct classes
according to the values of winding numbers k and m. The
half-vortex should be found by minimizing the full Gross-
Pitaevskii Hamiltonian within a particular topological class.
This solution exists since the energy is bound from below.
This solution is static since it is a minimum of the Hamil-
tonian. The half-vortices can be found either by numerical
solution of Gross-Pitaevskii equation with the required
asymptotic behavior or by other means �e.g., by variational
method�.

Finally, we comment on the stability of half-vortices from
the other point of view. In the half-vortex core, when r→0,
one of the circular components goes to zero and is singular:
the order parameter behaves as re�i� so that the gradient is
not defined at r=0. For example, for the �1/2,1/2� half-
vortex, �−�rei� and �+=const.8 If a half-vortex state is cre-
ated by some external means and evolves according to the
time-dependent Gross-Pitaevskii equation, this singularity in
the solution will be present all the time. It is because the
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FIG. 1. �Color online� Showing the polarization angle 	���
�solid blue line� and the phase angle ���� �dashed red line� of the
order parameter of half-quantum vortices. �a� The case of
�1 /2, �1 /2� half-vortices. �b� The case of �−1 /2, �1 /2� half-
vortices. Insets show the warping of streamlines �thick green lines�
of the current around the half-vortex core with respect to the perfect
circles �thin black lines�.
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Gross-Pitaevskii equation is regular and the vortex singulari-
ties are rigid.9 This is the reason why the estimation of life-
time, given by Eq. �24� of Ref. 5 is not valid.

To conclude, we have shown that half-quantum vortices
remain stable in the presence of TE-TM splitting of polariton
band but their texture becomes warped—the polarization and

phase angles depend nonlinearly on the azimuthal angle. We
calculated the warping effect far away from the half-vortex
core.
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